

Year 12 / AS

Weekly Tutorial 02

mathsalpha.com

- 1. Find the values of k such that the equation $k = kx^2 3x + 2k = 0$ has no real roots.
- 2. $x^2 2(a+1)x + 3a = 0$ Describe the nature of roots of above quadratic equation for different values of a.
- 3. Find the range of values of k such that, $2x^2 - 4x + (3k - 2) > 0$
- 4. Find the range of values of k such that, $3x^2 2(k+2)x + 3 = 0$ has real roots.
- 5. Simplify the following.

a)
$$\left(4x^{12} + \frac{17x^{12}}{27}\right)^{-\frac{2}{3}}$$

b)
$$a^2 \left(3a^{-\frac{1}{4}}\right)^4$$

6. Solve.

a)
$$2x^2 - (2\sqrt{3} + 3)x + 3\sqrt{3} > 0$$

b)
$$x^2 + 3x - 1 \le 0$$

7.

- a) Write $x^2 + 5x + 15$ in the form $(x + a)^2 + b$. Where a and b are real constants.
- **b)** Hence, or otherwise find the maximum value of $\frac{1}{x^2+5x+15}$
- 8. $f(x) = -3x^2 + 2x + 30$ Find the minimum value of $\frac{5}{f(x)}$.