

Year 12 / AS

Weekly Tutorial 01

mathsalpha.com

- 1. Given that $(x + y)(2x 3y)(2x + 3y) = ax^3 + by^3 + cx^2y + dy^2x$, Find a, b, c and d constants.
- 2. Simplify the following.

a)
$$\left(\frac{625}{256}\right)^{-\frac{3}{4}}$$

b)
$$\frac{3x^3y^4 - 4x^5y^3}{x^3y^3}$$

3.

a) Prove that
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

b) Hence prove that
$$\frac{x^3 - y^3}{x^2 - y^2} = \frac{x^2 + xy + y^2}{x + y}$$

4. Rationalize the denominator.

a)
$$\frac{\sqrt{3}}{(\sqrt{3}-1)^2}$$

b)
$$\frac{\sqrt{20}-2}{\sqrt{45}+1}$$

5. Solve;
$$2 + 3x = \sqrt{3}(2x + 1)$$

- **6.** Solve by completing the squares, $\sqrt{3}x^2 \sqrt{27}x 27 = 0$
- 7. Sketch the graph of $y = 2x^2 + 3x 7$ showing roots, coordinates at the turning points and y-intercept.

8.
$$f(x) = 2x^2 + 3kx + 2$$

Find the values of k for which $f(x)$ has equal roots.

9. Find the range of value of a for which $3x^2 + 2x + a = 0$ has two distinct real roots.

10.
$$f(x) = 2x^2 + (k+3)x + k$$
.
Prove that $f(x)$ has two distinct real roots for all values of k .